Due to the increasing use of hard-to-cut materials, machining processes face the challenge of overcoming technologically determined limits of machinability. Hybrid manufacturing processes combine different mechanisms of action into one process and are a promising approach to shift the limits of the individual processes. One approach for improving efficiency through hybrid manufacturing processes is thermally assisted machining. By softening the material in the heated area, machining forces can be reduced and surface quality can be improved. In comparison to other heating methods, induction is an easy-to-use and highly efficient option. Currently, there is no consistent method for simulating this process. The paper shows approaches for the Finite Element Method simulation and implementation of induction-assisted turning. The simulation model developed by the authors predicted temperatures and cutting forces with the validation and reduction of forces are proven by the practical tests.

Full Text:



Patz, M. “Innovationen in der Zerspantechnik: Technologien, Anwendungsbeispiele und Perspektiven,” Diamant Hochleistungswerkzeuge dihw Magazin, no. 3, 2010.

Brecher, C. Integrative Produktionstechnik für Hochlohnländer: Hybride Produktionssysteme. Berlin, Heidelberg: Springer Verlag, 2011.

Brecher, C. Advances in Production Technology. Cham: Springer Verlag, 2015.

Luo, X. and Qin, Y. Hybrid Machining: Therory, Methods and Case Studies. London: Academic Press Verlag, 2018.

Emonts, M. Hybride Produktionstechnik: Neue Entwicklungen von hybriden Verfahren und hybriden Werkzeugmaschinen. [Online]. Available: (accessed: Oct. 7 2021).

Mescheder, U., Armbruster, C. Forschungsbericht 2018/2019. [Online]. Available: (accessed: Oct. 16 2021).

Baili, M. et all “An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability,” Applied Mechanics and Materials, vol. 62, 2011.

Jeon, Y., Park, H. W., Lee, C. M. “Current research trends in external energy assisted machining,” International Journal of Precision Engineering and Manufacturing, vol. 14, no. 2, 2013.

Abele, E., Hölscher, R. “Durch induktive Erwärmung gestützte Materialbearbeitung, insbesondere Zerspanen von Titanlegierungen oder Materialien mit vergleichbar geringem Wärmeleitfaktor,” EP24180044A1, Deutschland, Feb 15, 2012.

Shokouhmand, H., Ghaffari, S. “Thermal analysis of moving induction heating of a hollow cylinder with subsequent spray cooling: Effect of velocity, initial position of coil, and geometry,” Applied Mathematical Modelling, vol. 36, no. 9, pp. 4304–4323, 2012, doi: 10.1016/j.apm.2011.11.058.

Sun, J., Li, S., Qiu, C., Peng, Y. “Numerical and experimental investigation of induction heating process of heavy cylinder,” Applied Thermal Engineering, vol. 134, pp. 341–352, 2018, doi: 10.1016/j.applthermaleng.2018.01.101.

Limido, J. et all “SPH method applied to high speed cutting modelling,” International Journal of Mechanical Sciences, vol. 49, no. 7, pp. 898–908, 2007, doi: 10.1016/j.ijmecsci.2006.11.005.

Kagimoto, H. et all “Effect of Temperature Dependence of Magnetic Properties on Heating Characteristics of Induction Heater,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3018–3021, 2010, doi: 10.1109/TMAG.2010.2046145.

Totten, G.E., Howes, M., Inoue, T. Handbook of Residual Stress and Deformation of Steel, 2002. [Online]. Available:

Wang, K.F., Chandrasekar, S., Yang, H. T. Y. “Finite-element simulation of moving induction heat treatment,” (in En;en), JMEP, vol. 4, no. 4, pp. 460–473, 1995, doi: 10.1007/BF02649308.

Cho, K.-H. “Coupled electro-magneto-thermal model for induction heating process of a moving billet,” International Journal of Thermal Sciences, vol. 60, pp. 195–204, 2012, 10.1016/j.ijthermalsci.2012.05.003.

Li, F., Li, X., Zhu, T., Rong, Y. “Numerical Simulation of the Moving Induction Heating Process with Magnetic Flux Concentrator,” Advances in Mechanical Engineering, vol. 5, p. 907295, 2013, doi: 10.1155/2013/907295.

Jain, I. “Electromagnetic-Thermal Modeling of Induction Heating of Moving Wire,” Heat Trans. Asian Res., vol. 46, no. 2, pp. 111–133, 2017, doi: 10.1002/htj.21201.

Villumsen, M., Torben, G. Fauerholdt, “Simulation of Metal Cutting using Smooth Particle Hydrodynamics,” 2008. [Online]. Available:

Avachat, C.S., Cherukuri, H.P. “A Parametric Study of the Modeling of Orthogonal Machining Using the Smoothed Particle Hydrodynamics Method,” ASME 2015 International Mechanical Engineering Congress and Exposition, 2016, doi: 10.1115/IMECE2015-53237.

Xi, Y., et all “SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy,” Computational Materials Science, vol. 84, pp. 188–197, 2014, doi: 10.1016/j.commatsci.2013.12.018.

Song, H. et all., “SPH/FEM modeling for laser-assisted machining of fused silica,” (in En;en), Int J Adv Manuf Technol, vol. 106, 5-6, pp. 2049–2064, 2020, doi: 10.1007/s00170-019-04727-6.

Llanos, I., Villar, J A., Urresti, I., Arrazola, J. “FINITE ELEMENT MODELING OF OBLIQUE MACHINING USING AN ARBITRARY LAGRANGIAN–EULERIAN FORMULATION,” Machining Science and Technology, vol. 13, no. 3, pp. 385–406, 2009, doi: 10.1080/10910340903237921.

Ozel, T., Llanos, I., Soriano, J., Arrazola, P.-J. “3D FINITE ELEMENT MODELLING OF CHIP FORMATION PROCESS FOR MACHINING INCONEL 718: COMPARISON OF FE SOFTWARE PREDICTIONS,” Machining Science and Technology, vol. 15, no. 1, pp. 21–46, 2011, doi: 10.1080/10910344.2011.557950.

Ojal, N., Copenhaver, R., Harish, P., Schmitz, L., Kyle, T. Devlugt and Adam W. Jaycox, “A Realistic Full-Scale 3D Modeling of Turning Using Coupled Smoothed Particle Hydrodynamics and Finite Element Method for Predicting Cutting Forces,”

John, O. Hallquist, LS-DYNA: Theory manual. Livermore, Calif.: Livermore Software Technology Corp, 2006.

Mruthunjaya, M., Yogesha, K.B. “A review on conventional and thermal assisted machining of titanium based alloy,” Materials Today: Proceedings, vol. 46, no. 1, pp. 8466–8472, 2021, doi: 10.1016/j.matpr.2021.03.490.

Wagner, V., Harzallah, M., Baili, M., Dessein, G., Lallement, D. “Experimental and numerical investigations of the heating influence on the Ti5553 titanium alloy machinability,” Journal of Manufacturing Processes, vol. 58, pp. 606–614, 2020, doi: 10.1016/j.jmapro.2020.08.018.


  • There are currently no refbacks.