SIMULATION BY FEM OF TIG DEPOSITION WELDING OF MULTICOMPONENT ALLOY ON CARBON STEEL SUBSTRATE
Abstract
Due to the high cost of multicomponent alloys production, the applicability of these materials is still limited in industry. However, the deposition welding or cladding process should be taken into consideration as a less expensive method, more afforded for achieving these special materials that could be employed for many industrial applications. This paper presents a numerical model used to simulate the deposition welding of a multicomponent alloy from the AlCrFeNi system on S235 structural steel substrate. The model was experimentally validated by measuring the temperature and stress developed during the cladding process. The numerical results revealed the pick temperature around 1700-1800°C in the molten pool and the equivalent stress of 600-700MPa in the deposited material.
Full Text:
PDFReferences
Miracle, D.B.; Senkov, O.N., A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater. 2017, 122, 448–511, doi:10.1016/j.actamat.2016.08.081.
George, E.P.; Curtin, W.A.; Tasan, C.C., High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms, Acta Mater. 2020, 188, 435–474, doi:10.1016/j.actamat.2019.12.015.
Sharma, P.; Dwivedi, V.K.; Dwivedi, S.P., Development of High Entropy Alloys: A Review, Mater. Today Proc. 2021, 43, 502–509, doi:10.1016/j.matpr.2020.12.023.
Scutelnicu, E.; Simion, G.; Rusu, C.C.; Gheonea, M.C.; Voiculescu, I.; Geanta, V., High Entropy Alloys Behaviour During Welding, Rev. Chim. 2001, 71, 219–233, doi:10.37358/RC.20.3.7991.
George, E.P.; Raabe, D.; Ritchie, R.O., High-Entropy Alloys, Nat. Rev. Mater. 2019, 4, 515–534, doi:10.1038/s41578-019-0121-4.
Tsai M.-H., Yeh J.W., High-Entropy Alloys: A Critical Review, Materials Research Letters, 2014, Vol, 2, Nr. 3, 107-123
Gali A., George E.P., Tensile properties of high- and medium-entropy alloys, Intermetallics, Vol. 39, 2013, pp. 74–78.
Senkov O. N., Wilks G.B., Miracle D.B., Chuang C.P., Liaw P.K., Refractory high-entropy alloys, Intermetallics, Vol. 18, Issue 9, 2010, pp. 1758-1765.
Voiculescu I., Geanta, V., Ionescu, M., Effects of heat treatments on the microstructure and microhardness of AlxCrFeNiMn alloys, Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment and Technology, 26, 2015, pp. 5-11.
Wu Z., Bei H., Pharr G.M., George E.P., Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Materialia, Vol. 81, 2014, pp. 428-441.
Senkov O. N., Wilks G. B., Scott J. M., Miracle D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, Vol. 19, Issue 5, 2011, pp. 698-706.
Gludovatz B., Hohenwarter A., Catoor D., Chang E. H., George E. P., Ritchie R.O., A fracture-resistant high-entropy alloy for cryogenic applications, Science,Vol. 345, 2014, Issue 6201, pp. 1153-1158.
He J. Y., Wang H., Huang H.L., Xu X. D., Chen M. W.,Wu Y., Liu X. J., Nieh T.G., An K., Lu Z. P., A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia, Vol. 102, 2016, pp. 187-196.
Voiculescu I., Geanta V., Scutelnicu E., Stefanoiu R., Rotariu A., Solomon Gh., Joining methods of high entropy alloys used for ballistic targets, 1st World Conference on Advanced Materials for Defense, AuxDefense 2018, Lisbon, 2018.
Lu Y. P., Gao X. Z., Jiang L., Chen Z. N., Wang T. M., Jie J. C., Kang H. J., Zhang Y. B., Guo S., Ruan H. H., Zhao Y. H., Cao Z. Q., Li T. J., Directly cast bulk eutectic and neareutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Materialia, Vol. 124, 2017, pp. 143-150.
Tang Z., Yuan T., Tsai C. W., Yeh J. W., Lundin C. D., Liaw P. K., Fatigue behavior of wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Materialia, Vol. 99, 2015, pag. 247-258.
Youssef K. M., Zaddach A. J., Niu C., Irving D. L., Koch C. C., A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures, Materials Research Letters, Vol. 3, 2015, pp. 95-99.
Zhu J. M., Fu H. M., Zhang H. F., Wang A. M., Li H., Hua Z.Q., Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Materials Science and Engineering A, Vol. 527, 2010, pag. 6975-6979.
Gorsse S., NguyenM. H., Senkov O. N., Miracle D. B., Database on the mechanical properties of high entropy alloys and complex concentrated alloys, Data in Brief, Vol. 21, 2018, pag. 2664-2678.
Thi-Cam Nguyen N., Moon J., Sathiyamoorthi P., Asghari-Rad P., Kim G., Lee C.S., Kim H.S., Superplasticity of V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy processed using high-pressure torsion, Materials Science and Engineering: A, 2019, Vol. 764, 9, 138198
Liu J., Guo X., Lin Q., He Z., An X., Li L., Liaw P. K., Liao X., Yu L., Lin J., Xie L., Ren J., Zhang Y., Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures, SCIENCE CHINA Materials, 2018.
Zherebtsov S., Stepanov N., Ivanisenko Y., Shaysultanov D., Yurchenko N., Klimova M., Salishchev G., Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures, Metals, 2018.
Waseem O.A., Ryu H.J., Combinatorial development of the low-density high-entropy alloy Al10Cr20Mo20Nb20Ti20Zr10 having gigapascal strength at 1000 °C, Journal of Alloys and Compounds, Vol. 845, 2020.
Wang W. R., Wang W. L., Yeh J. W., Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, Journal of Alloys and Compounds, Vol. 589, 2014, 143-152.
Li, J.; Huang, Y.; Meng, X.; Xie, Y. A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment. Adv. Eng. Mater. 2019, 21, 1900343, doi:10.1002/adem.201900343.
Arif, Z.U.; Khalid, M.Y.; ur Rehman, E.; Ullah, S.; Atif, M.; Tariq, A. A Review on Laser Cladding of High-Entropy Alloys, Their Recent Trends and Potential Applications. J. Manuf. Process. 2021, 68, 225–273, doi:10.1016/j.jmapro.2021.06.041.
Sharma, A.. High Entropy Alloy Coatings and Technology, Coatings 2021, 11, 372, doi:10.3390/coatings11040372.
Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M., Thermal Spray High-Entropy Alloy Coatings: A Review., J. Therm. Spray Technol. 2020, 29, 857–893, doi:10.1007/s11666-020-01047-0
Duchaniya, R.K.; Pandel, U.; Rao, P. Coatings Based on High Entropy Alloys: An Overview, Mater. Today Proc. 2021, 44, 4467–4473, doi:10.1016/j.matpr.2020.10.720.
Liao, W.-B.; Zhang, H.; Liu, Z.-Y.; Li, P.-F.; Huang, J.-J.; Yu, C.-Y.; Lu, Y., High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy 2019, 21, 146, doi:10.3390/e21020146.
Liao, W.; Lan, S.; Gao, L.; Zhang, H.; Xu, S.; Song, J.; Wang, X.; Lu, Y., Nanocrystalline High-Entropy Alloy (CoCrFeNiAl0.3) Thin-Film Coating by Magnetron Sputtering, Thin Solid Films 2017, 638, 383–388, doi:10.1016/j.tsf.2017.08.006.
Jiang, Y.Q.; Li, J.; Juan, Y.F.; Lu, Z.J.; Jia, W.L., Evolution in Microstructure and Corrosion Behavior of AlCoCrxFeNi High-Entropy Alloy Coatings Fabricated by Laser Cladding, J. Alloys Compd. 2019, 775, 1–14, doi:10.1016/j.jallcom.2018.10.091.
Liu, J.; Liu, H.; Chen, P.; Hao, J., Microstructural Characterization and Corrosion Behaviour of AlCoCrFeNiTix High-Entropy Alloy Coatings Fabricated by Laser Cladding, Surf. Coat. Technol. 2019, 361, 63–74, doi: 10.1016/j.surfcoat.2019.01.044.
Fereidouni, M.; Sarkari Khorrami, M.; Heydarzadeh Sohi, M., Liquid Phase Cladding of AlxCoCrFeNi High Entropy Alloys on AISI 304L Stainless Steel, Surf. Coat. Technol. 2020, 402, 126331, doi:10.1016/j.surfcoat.2020.126331.
Huo, W.; Shi, H.; Ren, X.; Zhang, J., Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding. Adv. Mater. Sci. Eng. 2015, 2015, 1–5, doi:10.1155/2015/647351.
Shang, C.; Axinte, E.; Sun, J.; Li, X.; Li, P.; Du, J.; Qiao, P.; Wang, Y., CoCrFeNi(W1−xMox) High-Entropy Alloy Coatings with Excellent Mechanical Properties and Corrosion Resistance Prepared by Mechanical Alloying and Hot Pressing Sintering. Mater. Des. 2017, 117, 193–202, doi:10.1016/j.matdes.2016.12.076.
Tang, Y.; Wang, S.; Sun, B.; Wang, Y.; Qiao, Y., Fabrication and wear behavior analysis on AlCrFeNi high entropy alloy coating under dry sliding and oil lubrication test conditions. Surf. Rev. Lett. 2016, 23, 1650018, doi:10.1142/S0218625X16500189.
Ren M.; Wang G.; Li B., Microstructure and properties of AlCrFeNi intermetallic for electronic packaging shell, 18th International Conference on Electronic Packaging Technology (ICEPT), 2017, doi: 10.1109/ICEPT.2017.8046570
Dong Y;, Lu Y.; Kong J.; Zhang J.; Li T.; Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, Journal of Alloys and Compounds, Vol. 573, 2013, pp. 96-101, doi: 10.1016/j.jallcom.2013.03.253
Voiculescu, I.; Geanta, V.; Stefanescu, E.V.; Simion, G.; Scutelnicu, E., Effect of Diffusion on Dissimilar Welded Joint between Al0.8CoCrFeNi High-Entropy Alloy and S235JR Structural Steel, Metals 2022, 12, 548, doi:10.3390/met12040548
Mitru, A.; Semenescu, A.; Simion, G.; Scutelnicu, E.; Voiculescu, I., Study on the Weldability of Copper—304L Stainless Steel Dissimilar Joint Performed by Robotic Gas Tungsten Arc Welding, Materials 2022, 15, 5535, doi:10.3390/ma15165535.
Mocanu, C.I.; Tudose, D.I.; Hadar, A.; Gavan, E., Strains and Stresses at Welding with Tubular Wires and Swinging the Electric Arc. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1262, 012053, doi:10.1088/1757-899X/1262/1/012053.
Birsan, D.C.; Simion, G.; Voiculescu, I.; Scutelnicu, E., Numerical Model Developed for Thermo-Mecahnical Analysis in AlCrFeMnNiHf0.05–Armox 500 Steel Welded Joint, AWET 2021, 32, 37–46, doi:10.35219/awet.2021.05.
Birsan, D.C.; Simion, G., Numerical Modelling of Thermo-Mechanical Effects Developed in Resistance Spot Welding of E304 Steel with Copper Interlayer. AWET 2022, 33, 89–94, doi:10.35219/awet.2022.07.
Birsan, D.; Scutelnicu, E.; Visan, D., Behaviour Simulation of Aluminium Alloy 6082-T6 during Friction Stir Welding and Tungsten Inert Gas Welding.; Barcelona, Spain, September 2011; pp. 103–108.
Suman, S.; Biswas, P., Microstructural, Strength and Residual Stress Studies on Single- and Double-Side Single-Pass Submerged Arc Welding of 9Cr–1Mo–V Steel Plate, J. Inst. Eng. India Ser. C 2022, 103, 1177–1191, doi:10.1007/s40032-022-00870-4.
Ahmad, A.S.; Wu, Y.; Gong, H.; Liu, L., Numerical Simulation of Thermal and Residual Stress Field Induced by Three-Pass TIG Welding of Al 2219 Considering the Effect of Interpass Cooling, Int. J. Precis. Eng. Manuf. 2020, 21, 1501–1518, doi:10.1007/s12541-020-00357-1.
Refbacks
- There are currently no refbacks.