EXPERIMENTAL RESEARCH ON POSITIONING ACCURACY OF EDUCATIONAL ROBOTS

Dragos-Florin CHITARIU, Teodora-Maria AGACHE, Cătălin-Gabriel DUMITRAS, Mihăiță HORODINCĂ, Florin-Daniel EDUTANU, George-Gabriel CHIRIAC

Abstract


The aim of the paper is to develop and test an adapted programming methodology for educational robot, for reducing positioning deviations. Experimental work was performed on determining the main precision characteristics of educational robots, which also are applied to industrial robots. There are few tools available to the robot user to improve accuracy. A programming methodology was proposed and the positioning accuracy on the X axis was measured with a laser interferometer. In addition, an own procedure was created to compensate for positioning deviations and introduce them into the programming process. Form the performed experiment resulted that cross-direction compensation reduces positioning errors. After the robot compensation, the positioning accuracy improves but the repeatability remains at closed values.

Full Text:

PDF

References


Spong, M. W., Hutchinson S., Vidyasagar M. Robot Modeling and Control, 1st ed.; ISBN: 978-1-119-52404-5, John Wiley & Sons, Inc., , U.S., 2006.

Bruno, S., Sciavicco, L., Villani, L., Oriolo, G. Robotics Modelling, Planning and Control, Springer-Verlag London, ISBN 978-1846286414, UK, 2009.

Zhang, X., Li M., Lim, J., H., Weng, Y., Wei Y., Tay D., Pham, H., Pham, Q.-C. Large-scale 3D printing by a team of mobile robots, Autom. in Construction, Elsevier, pp. 98–106 , 10.1016/j.autcon.2018.08.004 95, 2018.

Leonesio, M., Villagrossi, E., Beschi, M., Marini, A., Bianchi, G., Pedrocchi, N., Molinari, L., Grechishnikov, V., Ilyukhin, Y., Isaev, A. Vibration Analysis of Robotic Milling Tasks, Procedia CIRP, 67, Elsevier, pp. 262-267, 10.1016/j.procir.2017.12.210, 2018.

Gao, Y., Gao, H., Bai, K., Li, M., Dong, W. A Robotic Milling System Based on 3D Point Cloud, Machines, 9, 355, pp. 1-20, MDPI, https://doi.org/10.3390/machines9120355, 2021.

Verl, A., Valente, A., Melkote, S., Brecher, C., Ozturk, E., Tunc, L. Robots in machining, CIRP Annals, 68, 2, .https://doi.org/10.1016/j.cirp.2019.05.009, 2019.

Chen. Y., Dong F. Robot machining: recent development and future research issues, Int J Adv Manuf Technol, Springer, pp. 489–1497,10.1007/s00170-012-4433-4, 2013.

International Standard ISO 9283: 1998 - Manipulating industrial robots — Performance criteria and related test method.

Gursel, A., Shirinzadeh B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing, Mech. and Machine Th., 40, 8.Elsevier, pp. 879-906, https://doi.org/10.1016/j.mechmachtheory.2004.12.012, 2005.

Slamani, M., Nubiola, A., Bonev, I. Assessment of the Positioning Performance of an Industrial Robot. Ind. Robot. Int. J. Robot. Res. Appl., Emerald, pp. 57–68, 39. 10.1108/01439911211192501, 2012.

Vocetka, M., Bobovský, Z., Babjak, J., Suder, J., Grushko, S., Mlotek, J., Krys, V., Hagara, M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci., MDPI, pp. 1-15, https://doi.org/10.3390/app112210813, 2021.

Chen, T.; Lin, J.; Wu, D.;Wu, H. Research of Calibration Method for Industrial Robot Based onError Model of Position. Appl. Sci., 11(3), MDPI, pp. 1-15, https://doi.org/10.3390/app110312872021,

Bucinskas, V., Dzedzickis, A., Sumanas, M., Sutinys, E., Petkevicius, S., Butkiene, J., Virzonis, D., Morkvenaite-Vilkonciene, I. Improving Industrial Robot Positioning Accuracy to the Microscale Using Machine Learnin g Method. Machines MDPI, pp. 1-15, 10 (10), 940; https://doi.org/10.3390/machines10100940. 2022.

International Standard ISO/TR 13309. Manipulating Industrial Robots – Informative guide on test equipment and metrology methods of operation for robot performance evaluation in accordance with ISO 9283. 1995.

Slamani, M., Nubiola, A., Bonev, I.A. Modeling and Assessment of the Backlash Error of an Industrial Robot. Robotica, Cambridge University Press, pp. 1167–1175 https://doi.org/10.1017/S0263574711001287, 2012.

Bleicher, F., Puschitz, F., Theiner, A. Laser Based Measurement System for Calibrating Machine Tools in 6 DOF. In R. Neugebauer (Ed.), Parallel Kinematic Machines in Research and Practice, pp. 617–634, Verlag, http://hdl.handle.net/20.500.12708/65454, 2006.

Garnier, S., Subrin,K., A metrological device for robot identification, Rob. and Comp.-Integ. Manuf., Elsevier, 73, 10.1016/j.rcim.2021.102249, 2022..

Sanjuan De Caro JD, Rahman M, Rulik I.; Forward kinematic analysis of Dobot using closed-loop method., IAES Int J Robot Autom., pp. 153-160, IJRA, IAES, http://doi.org/10.11591/ijra.v9i3.pp153-159, 2020.

Dobot Magician User Guide 2020, Issue: V1.9.0, Shenzhen Yuejiang Technology Co., Ltd., China, https://www.dobot-robots.com/service/download-center .

Wu, L., Yang, J., Zhang, X., Chen, Y. Multi Manipulator Cooperative 3D Printing Based on Dobot Manipulator, IOP Conf. Series. Ma. Sci. and Eng., , Iss. 4.10.1088/1757-899X/382/4/042040, Bristol, 382, 2018

XL80 training manual (Part 1) 2008., H-2000-1096-01-A, Renishaw plc., New Mills, UK, https://www.renishaw.com/resourcecentre/en/details/User-guide-XL-80-laser-system.

Stryczek R., Dutka P., The analysis of signal disruptions from an optical triangulation measurement sensor, MAM, 10.14313/PAR_222/59 , Vol. 62, No. 02, 2016.

Mooring, B., Roth ZS, Driels MR. Fundamentals of manipulator calibration. Wiley, 0-471-50864-0, New York, 1991.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :