DIGITAL TWIN VIRTUAL APPROACH OF ROBOT BASED INCREMENTAL SHEET-METAL FORMING PROCESS
Abstract
Full Text:
PDFReferences
Colombo A, Karnouskos S, Kaynak O, Shi Y, Yin S. Industrial cyberphysical systems: a backbone of the fourth industrial revolution, IEEE Ind. Electron, Mag. 11, 6-16, 2017, https://doi.org/10.1109/MIE.2017.2648857.
Jiang, Y., Yin, S., Li, K., Luo, H., Kaynak, O. Industrial applications of digital twins. Philosophical Transactions of the Royal Society A, 379(2207), 20200360, 2021, https://doi.org/10.1098/rsta.2020.0360.
Liu, M., Fang, S., Dong, H., Xu, C. Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58, 346-361, 2021, https://doi.org/10.1016/j.jmsy.2020.06.017.
Grieves M, Vickers J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. Transdiscipl Perspect Complex Syst:85–113, 2016, https://doi.org/10.1007/978-3-319-38756-7_4.
Grieves M. Digital twin: manufacturing excellent through virtual factory replication. White paper 1:1–7, 2014.
Kenett, R. S., Bortman, J. The digital twin in Industry 4.0: A wide‐angle perspective. Qual. Reliab. Eng, 38(3), 1357-1366, 2022, https://doi.org/10.1002/qre.2948.
Burghardt, A., Szybicki, D., Gierlak, P., Kurc, K., Pietruś, P., Cygan, R. Programming of industrial robots using virtual reality and digital twins. Applied Sciences, 10(2), 486, 2020, https://doi.org/10.3390/app10020486.
Li, M., Wang, H. Enabling Improved Learning Capability of Industrial Robots with Knowledge Graph Towards Intelligent Digital Twins. In 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 599-604). IEEE., https://doi.org/10.1109/CSCWD54268.2022.9776063.
Leszak E. Apparatus and Process for Incremental Dieless Forming. U.S. Patent Application Granted 3342051A, 19 September 1967.
Trzepieciński, T., Oleksik, V., Pepelnjak, T., Najm, S. M., Paniti, I., Maji, K. Emerging trends in single point incremental sheet forming of lightweight metals. Metals, 11(8), 1188, 2021, https://doi.org/10.3390/met11081188.
Bârsan, A., Racz, S. G., Breaz, R., Crenganiș, M. Dynamic analysis of a robot-based incremental sheet forming using Matlab-Simulink Simscape™ environment.
Mater. Today: Proc., 62, 2538-2542, 2022, https://doi.org/10.1016/j.matpr.2022.03.134
Verl, A., Valente, A., Melkote, S., Brecher, C., Ozturk, E., Tunc, L. T. Robots in machining. CIRP Annals, 68(2), 799-822, 2019, https://doi.org/10.1016/j.cirp.2019.05.009.
Crenganiș, M., Bârsan, A., Racz, S. G., Iordache, M. D. (2018). Single point incremental forming using Kuka KR6-2 industrial Robot-a dynamic approach. Proceedings in Manufacturing Systems, 13(3), 133-140.
Kumar, S. P., Elangovan, S., Mohanraj, R., Boopathi, S. Real-time applications and novel manufacturing strategies of incremental forming: An industrial perspective. Materials Today: Proceedings, 46, 8153-8164., https://doi.org/10.1016/j.matpr.2021.03.109.
Li, J., Wang, Z., Zhang, S., Lin, Y., Jiang, L., Tan, J. Task incremental learning-driven Digital-Twin predictive modeling for customized metal forming product manufacturing process. Robotics and Computer-Integrated Manufacturing, 85, 102647, 2024, https://doi.org/10.1016/j.rcim.2023.102647.
Kucuk, S., Bingul, Z. Robot kinematics: Forward and inverse kinematics (pp. 117-148). London, UK: INTECH Open Access Publishe, 2006.
Nicolescu, A. F., Ilie, F. M., & Alexandru, T. G. Forward and inverse kinematics study of industrial robots taking into account constructive and functional parameter's modeling. Proceedings in Manufacturing Systems, 10(4), 157, 2015.
Refbacks
- There are currently no refbacks.