EXPLORATIVE AI FOR CONCEPTUAL DESIGN AND SPECIFICATION ENGINEERING OF A MULTI-FUNCTIONAL AUTONOMOUS ROBOTIC PLATFORM FOR SMART URBAN SERVICES

Stelian BRAD, Emilia BRAD, Bogdan BALOG, Vasile-Dragoș BARTOŞ, Alexandru CÎRLEJAN

Abstract


The design of autonomous robotic systems involves selecting and integrating components while ensuring feasibility across functional and environmental constraints. This study introduces an Explorative AI-driven methodology for generating and refining modular robotic platform configurations. The AI model analyzed millions of design configu-rations, identifying over 1400 feasible variants based on mobility constraints, energy consumption, subsystem com-patibility, operational scalability, and regulatory compliance. A multi-objective optimization process refined these variants, ensuring compatibility across subsystems while minimizing integration conflicts. From these, a final opti-mized robotic system configuration was selected, which was then documented in an extensive 100,000-word engineer-ing specification covering structural design, functional integration, and system-level justifications. This comprehen-sive output, covering every aspect of the design, ensures the system can be implemented with minimal design omissions or integration errors. The proposed methodology enhances early-stage robotic design by systematically generating, evaluating, and documenting configurations, reducing risks in later development stages.

References


Brad, S., Complex system design technique, International Journal of Production Research, 46(7), pp. 1769-1786, 2008. DOI: 10.1080/ 00207540701361475.

Ashour, S., Gogo, S., Boosting the Design Process Using a Proposed Methodology Based on Computational Design, Engineering Research Journal, 1687(1137), pp. 25-38, 2024. https://www.researchgate.net/publication/378855884.

Ma, W., Zhao, L., She, C., Jiang, Y., Sun, A., Zhu, B., Balkcom, D., Vosoughi, S., On the Exploration of LM-Based Soft Modular Robot Design, 2024, http://dx.doi.org/10.48550/ arxiv. 2411.00345.

Li, S., Wang, J., Zhang, H., Feng, Y., Lu, G., Zhai, A., Incremental Accelerated Gradient Descent and Adaptive Fine-tuning Heuristic Performance Optimization for Robotic Motion Planning, Elsevier, ISSN 0957-4174, 2023.

Sánchez-Sosa, R.-A., Chavero-Navarrete, E., Robotic Cell Layout Optimization Using a Genetic Algorithm, Applied Sciences, 2024, http://dx.doi.org/10.3390/app14198605.

Shafeek, Y. A., Ali, H. I., Application of Par-ticle Swarm Optimization to a Hybrid H∞/Sliding Mode Controller Design for the Triple Inverted Pendulum System, Algorithms, ISSN 1999-4893, 2024.

Zhao, J., Peng, W., Wang, H., Yao, W., Zhou, W., A Morphological Transfer-Based Multi-Fidelity Evolutionary Algorithm for Soft Robot Design, IEEE Computational Intelligence Magazine, 2024, http://dx.doi.org/ 10.1109/ mci.2024.3431456.

Youssef, K., Zayegh, Y., Alkhedher, M., Autonomous AI-Controlled Mars Rover Ro-bot, Advances in Science and Engineering Technology International, 2024, http://dx.doi.org/ 10.1109/aset60340.2024.10708660.

Dong, Y., Han, S., Cheng, X., Friedl, W., Muchacho, R. I. C., Roa, M. A., Tůmova, J., Pokorny, F. T., Co-Designing Tools and Con-trol Policies for Robust Manipulation, 2024, http://dx.doi.org/10.48550/arxiv.2409.11113

Engel-Hermann, P., Skulmowski, A., Ap-pealing, but misleading: a warning against a naive AI realism, Springer, ISSN 2731-7124, 2024.

Jiang, S., Xie, M., Luo, J., Large Language Models for Combinatorial Optimization of Design Structure Matrix, 2024, http://dx.doi.org/10.48550/arxiv.2411.12571

Göpfert, J., Weinand, J. M., Kuckertz, P., Stolten, D., Opportunities for Large Lan-guage Models and Discourse in Engineering Design, Elsevier, ISSN 2666-5468, 2024.

Jeong, H., Lee, H., Kim, C., Shin, S., A Sur-vey of Robot Intelligence with Large Lan-guage Models, Applied Sciences, 2024, http://dx.doi.org/10.3390/app 14198868.

Makatura, L., Foshey, M., Wang, B., et al., Large Language Models for Design and Manufacturing, 2024, http://dx.doi.org/ 10.21428/e4baedd9.745b62fa.

Wang, X., Salmani, M., Omidi, P., et al., Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models, 2024, http://dx.doi.org/ 10.24963/ijcai. 2024/917.

Muehlhaus, M., Steimle, J., Interaction De-sign with Generative AI: An Empirical Study of Emerging Strategies Across the Four Phas-es of Design, 2024, http://dx.doi.org/ 10.48550/arxiv. 02662.

Jurgens, B. C., Seele, H., Schricker, H., Reinert, C., von der Assen, N., Decision-Based vs. Distribution-Driven Clustering for Stochastic Energy System Design Optimiza-tion, 2024, http://dx.doi.org/10.48550/ arxiv.2407.11457.

Xie, S., Zhu, Z., Wang, H., An Improved Coevolutionary Algorithm for Constrained Multi-Objective Optimization Problems, http://dx.doi.org/10.4018/ijcini.355766.

Brad, S., Brad, E., Cîrlejan, A., Enhancing TRIZ Contradiction Resolution with AI-Driven Contradiction Navigator (AICON), Advances, TRIZ: Methods, Tools, Case Studies and Fu-ture Trends, R. Bataev, E. A. Ponomarenko, H. S. Salem (Eds.), pp. 88-105, Springer, 2024.

Montenegro, N., Integrative Analysis of Text-to-Image AI Systems in Architectural De-sign Education, Journal of Architecture and Urbanism, 2024, http://dx.doi.org/ 10.3846/jau.2024.20870.

Brad, S., Rat, D.I., Topological Optimization of a Car Module with TRIZ and Machine Learning, World Conference of AI-Powered Innovation and Inventive Design, Cavallucci, D., Brad, S., Livotov, P. (Eds.), pp. 97-116, ISBN, TFC 2024, Springer, Cham, 2025.

Bogucka, E. P., Constantinides, M., Šćepa-nović, S., Quercia, D., Co-designing an AI Impact Assessment Report Template with AI Practitioners and AI Compliance Experts, Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2024, http://dx.doi.org/10.1609/aies.v7i1.31627.

Xie, Y., Pinskier, J., Wang, X., Howard, D., Evolutionary Seeding of Diverse Structural Design Solutions via Topology Optimization, ACM Transactions on Evolutionary Learning, 2024, http://dx.doi.org/10.1145/3670693

Akbaş, B., Yüksel, H. T., Soylemez, A., Zyada, M. E., Saraç, M., Stroppa, F., The Im-pact of Evolutionary Computation on Robotic Design: A Case Study with an Underactuated Hand Exoskeleton, IEEE International Con-ference on Robotics and Automation (ICRA), 2024, http://dx.doi.org/10.48550/arxiv.2403. 15812.

Liu, Y., Wu, X., Sang, Y., Zhao, C., Wang, Y., Shi, B., Fan, Y., Evolution of Surgical Ro-bot Systems Enhanced by Artificial Intelli-gence: A Review, Advanced Intelligent Sys-tems, Wiley, ISSN 2366-7478, 2024.

Riesenegger, L., Hübner, A., Reducing Food Waste at Retail Stores—An Explorative Study, Sustainability, MDPI, ISSN 2071-1050, 2022.

Kuhn, H., Sternbeck, M. G., Integrative retail logistics: An exploratory study, Opera-tions Management Research, Springer, ISSN 1936-9735, 2013.

World Economic Forum, The future of the last-mile ecosystem: Transition roadmaps for public-and private-sector players, 2020, https:// www3.weforum.org/docs/WEF_Future_of_ the_last_mile_ecosystem.pdf.

Ostermeier, M., Heimfarth, A., Hübner, A., Cost‐optimal truck‐and‐robot routing for last‐mile delivery, Networks, Wiley, ISSN 0028-3045, 2021.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :