EXPLORATIVE AI FOR CONCEPTUAL DESIGN AND SPECIFICATION ENGINEERING OF A MULTI-FUNCTIONAL AUTONOMOUS ROBOTIC PLATFORM FOR SMART URBAN SERVICES

Stelian BRAD, Emilia BRAD, Bogdan BALOG, Vasile-Dragoș BARTOŞ, Alexandru CÎRLEJAN

Abstract


The design of autonomous robotic systems involves selecting and integrating components while ensuring feasibility across functional and environmental constraints. This study introduces an Explorative AI-driven methodology for generating and refining modular robotic platform configurations. The AI model analyzed millions of design configu-rations, identifying over 1400 feasible variants based on mobility constraints, energy consumption, subsystem com-patibility, operational scalability, and regulatory compliance. A multi-objective optimization process refined these variants, ensuring compatibility across subsystems while minimizing integration conflicts. From these, a final opti-mized robotic system configuration was selected, which was then documented in an extensive 100,000-word engineer-ing specification covering structural design, functional integration, and system-level justifications. This comprehen-sive output, covering every aspect of the design, ensures the system can be implemented with minimal design omissions or integration errors. The proposed methodology enhances early-stage robotic design by systematically generating, evaluating, and documenting configurations, reducing risks in later development stages.

Full Text:

PDF

References


Brad, S., Complex system design technique, International Journal of Production Research, 46(7), pp. 1769-1786, 2008. DOI: 10.1080/ 00207540701361475.

Ashour, S., Gogo, S., Boosting the Design Process Using a Proposed Methodology Based on Computational Design, Engineering Research Journal, 1687(1137), pp. 25-38, 2024. https://www.researchgate.net/publication/378855884.

Ma, W., Zhao, L., She, C., Jiang, Y., Sun, A., Zhu, B., Balkcom, D., Vosoughi, S., On the Exploration of LM-Based Soft Modular Robot Design, 2024, http://dx.doi.org/10.48550/ arxiv. 2411.00345.

Li, S., Wang, J., Zhang, H., Feng, Y., Lu, G., Zhai, A., Incremental Accelerated Gradient Descent and Adaptive Fine-tuning Heuristic Performance Optimization for Robotic Motion Planning, Elsevier, ISSN 0957-4174, 2023.

Sánchez-Sosa, R.-A., Chavero-Navarrete, E., Robotic Cell Layout Optimization Using a Genetic Algorithm, Applied Sciences, 2024, http://dx.doi.org/10.3390/app14198605.

Shafeek, Y. A., Ali, H. I., Application of Par-ticle Swarm Optimization to a Hybrid H∞/Sliding Mode Controller Design for the Triple Inverted Pendulum System, Algorithms, ISSN 1999-4893, 2024.

Zhao, J., Peng, W., Wang, H., Yao, W., Zhou, W., A Morphological Transfer-Based Multi-Fidelity Evolutionary Algorithm for Soft Robot Design, IEEE Computational Intelligence Magazine, 2024, http://dx.doi.org/ 10.1109/ mci.2024.3431456.

Youssef, K., Zayegh, Y., Alkhedher, M., Autonomous AI-Controlled Mars Rover Ro-bot, Advances in Science and Engineering Technology International, 2024, http://dx.doi.org/ 10.1109/aset60340.2024.10708660.

Dong, Y., Han, S., Cheng, X., Friedl, W., Muchacho, R. I. C., Roa, M. A., Tůmova, J., Pokorny, F. T., Co-Designing Tools and Con-trol Policies for Robust Manipulation, 2024, http://dx.doi.org/10.48550/arxiv.2409.11113

Engel-Hermann, P., Skulmowski, A., Ap-pealing, but misleading: a warning against a naive AI realism, Springer, ISSN 2731-7124, 2024.

Jiang, S., Xie, M., Luo, J., Large Language Models for Combinatorial Optimization of Design Structure Matrix, 2024, http://dx.doi.org/10.48550/arxiv.2411.12571

Göpfert, J., Weinand, J. M., Kuckertz, P., Stolten, D., Opportunities for Large Lan-guage Models and Discourse in Engineering Design, Elsevier, ISSN 2666-5468, 2024.

Jeong, H., Lee, H., Kim, C., Shin, S., A Sur-vey of Robot Intelligence with Large Lan-guage Models, Applied Sciences, 2024, http://dx.doi.org/10.3390/app 14198868.

Makatura, L., Foshey, M., Wang, B., et al., Large Language Models for Design and Manufacturing, 2024, http://dx.doi.org/ 10.21428/e4baedd9.745b62fa.

Wang, X., Salmani, M., Omidi, P., et al., Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models, 2024, http://dx.doi.org/ 10.24963/ijcai. 2024/917.

Muehlhaus, M., Steimle, J., Interaction De-sign with Generative AI: An Empirical Study of Emerging Strategies Across the Four Phas-es of Design, 2024, http://dx.doi.org/ 10.48550/arxiv. 02662.

Jurgens, B. C., Seele, H., Schricker, H., Reinert, C., von der Assen, N., Decision-Based vs. Distribution-Driven Clustering for Stochastic Energy System Design Optimiza-tion, 2024, http://dx.doi.org/10.48550/ arxiv.2407.11457.

Xie, S., Zhu, Z., Wang, H., An Improved Coevolutionary Algorithm for Constrained Multi-Objective Optimization Problems, http://dx.doi.org/10.4018/ijcini.355766.

Brad, S., Brad, E., Cîrlejan, A., Enhancing TRIZ Contradiction Resolution with AI-Driven Contradiction Navigator (AICON), Advances, TRIZ: Methods, Tools, Case Studies and Fu-ture Trends, R. Bataev, E. A. Ponomarenko, H. S. Salem (Eds.), pp. 88-105, Springer, 2024.

Montenegro, N., Integrative Analysis of Text-to-Image AI Systems in Architectural De-sign Education, Journal of Architecture and Urbanism, 2024, http://dx.doi.org/ 10.3846/jau.2024.20870.

Brad, S., Rat, D.I., Topological Optimization of a Car Module with TRIZ and Machine Learning, World Conference of AI-Powered Innovation and Inventive Design, Cavallucci, D., Brad, S., Livotov, P. (Eds.), pp. 97-116, ISBN, TFC 2024, Springer, Cham, 2025.

Bogucka, E. P., Constantinides, M., Šćepa-nović, S., Quercia, D., Co-designing an AI Impact Assessment Report Template with AI Practitioners and AI Compliance Experts, Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2024, http://dx.doi.org/10.1609/aies.v7i1.31627.

Xie, Y., Pinskier, J., Wang, X., Howard, D., Evolutionary Seeding of Diverse Structural Design Solutions via Topology Optimization, ACM Transactions on Evolutionary Learning, 2024, http://dx.doi.org/10.1145/3670693

Akbaş, B., Yüksel, H. T., Soylemez, A., Zyada, M. E., Saraç, M., Stroppa, F., The Im-pact of Evolutionary Computation on Robotic Design: A Case Study with an Underactuated Hand Exoskeleton, IEEE International Con-ference on Robotics and Automation (ICRA), 2024, http://dx.doi.org/10.48550/arxiv.2403. 15812.

Liu, Y., Wu, X., Sang, Y., Zhao, C., Wang, Y., Shi, B., Fan, Y., Evolution of Surgical Ro-bot Systems Enhanced by Artificial Intelli-gence: A Review, Advanced Intelligent Sys-tems, Wiley, ISSN 2366-7478, 2024.

Riesenegger, L., Hübner, A., Reducing Food Waste at Retail Stores—An Explorative Study, Sustainability, MDPI, ISSN 2071-1050, 2022.

Kuhn, H., Sternbeck, M. G., Integrative retail logistics: An exploratory study, Opera-tions Management Research, Springer, ISSN 1936-9735, 2013.

World Economic Forum, The future of the last-mile ecosystem: Transition roadmaps for public-and private-sector players, 2020, https:// www3.weforum.org/docs/WEF_Future_of_ the_last_mile_ecosystem.pdf.

Ostermeier, M., Heimfarth, A., Hübner, A., Cost‐optimal truck‐and‐robot routing for last‐mile delivery, Networks, Wiley, ISSN 0028-3045, 2021.


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :