ADVANCING GREEN COMPOSITES: A COMPARATIVE ANALYSIS OF SISAL, COIR, AND GLASS FIBER-REINFORCED POLYMERS

Sergiu LAZĂR, Ionela Magdalena ROTARU, Dan DOBROTĂ

Abstract


The research explores the mechanical, thermal, and aging properties of coir and sisal fiber-reinforced polymer-based composites and compares them to glass fiber-reinforced composites. From tensile testing, sisal composites were found to be more tensile than coir but less than glass fiber composites. Thermogravimetric analysis (TGA) found sisal to exhibit an onset decomposition temperature of 380°C, higher than glass fiber at 320°C, reflecting better initial thermal stability. Thermal shock aging tests did, however, report severe mechanical degradation for natural fiber composites, with 53.20% loss being experienced by coir. SEM analysis confirmed the occurrence of good fiber-matrix adhesion for glass and sisal composites, whereas voids and non-bonding were observed for coir. Sisal fibers, in spite of mechanical drawbacks, do have potential in sustainable automobile, aerospace, and lightweight structural applications, whereas research in fiber-matrix adhesion, hybridization, and improvement in durability is to be pursued for future progress. 

Full Text:

PDF

References


Lazăr, S., Dobrotă, D., Breaz, R.-E., Racz, S.-G., Eco-Design of Polymer Matrix Composite Parts: A Review, Polymers, vol. 15, no. 17, Art. no. 17, 2023, doi: 10.3390/polym15173634.

Dobrotă, D., Icociu, C. V., Lazăr, C. V., Racz, S.-G., Moraru, G.-M., Ecodesign Enhancement of Polymeric Resins: Reinforcing with Synthetic and Natural Fibers Using Theory of Inventive Problem Solving-Algorithm of Inventive Problem Solving for Sustainable Composite Design, Polymers, vol. 16, no. 24, Art. no. 24, Jan. 2024, doi: 10.3390/polym16243458.

Shaker, K., Nawab, Y., Jabbar, M., Bio-composites: Eco-friendly Substitute of Glass Fiber Composites, in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Cham: Springer International Publishing, 2020, pp. 1–25. doi: 10.1007/978-3-030-11155-7_108-1.

Costa, E. M., Pedrosa, M. O., Vieira, M., Baptista, E. A., Environmental and Financial Improvements Due to the Use of Ecodesign—In One Furniture Industry, pp. 231–238, 2019, doi: 10.1007/978-3-319-93488-4_26.

Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., Karim, N., Sustainable Fiber-Reinforced Composites: A Review, Adv. Sustain. Syst., vol. 6, no. 11, Nov. 2022, doi: 10.1002/adsu.202200258.

Hadăr, A., Baciu, F., Voicu, A.D., Vlăsceanu, D., Tudose, D.I., Adetu, C., Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads, Polymers, 14(15), 2022, 3213, WOS:000840176700001

Bekele, A. E., Lemu, H. G., Jiru, M. G. , Study of the Effects of Alkali Treatment and Fiber Orientation on Mechanical Properties of Enset/Sisal Polymer Hybrid Composite, J. Compos. Sci., vol. 7, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/jcs7010037.

Tabacu, Şt., Hadăr, A., Marin, D., Dinu, G., Ionescu, D.S., Structural Performances of Thermoplastic Manufactured Parts, Mat. Plast., 45(1), 2008, pp. 113-118, ISSN 0025 - 5289

de Castro, B. D., Fotouhi, M., Vieira, L. M. G., de Faria, P. E., Campos Rubio, J. C., Mechanical Behaviour of a Green Composite from Biopolymers Reinforced with Sisal Fibres, J. Polym. Environ., vol. 29, no. 2, pp. 429–440, Feb. 2021, doi: 10.1007/S10924-020-01875-9/METRICS.

Study on mechanical properties of sisal and glass fiber reinforced composites | Request PDF, Accessed: Feb. 12, 2025. [Online]. Available: https://www.researchgate.net/publication/326236443_Study_on_mechanical_properties_of_sisal_and_glass_fiber_reinforced_composites

Banea, M.D., Neto, J.S.S., Cavalcanti, D.K.K., Thermal Analysis of Hybrid Epoxy/Synthetic/Natural Fiber Composites, https://doi.org/10.1007/978-981-19-3603-6_50 , 2022

Cerbu, C., Ursache, Şt., Botiş, M. F., Hadăr, A., Simulation of the Hybrid Carbon-Aramid Composite Materials Based on Mechanical Characterization by Digital Image Correlation Method, Polymers, 13(23), 2021, 4184

Dorez, G., Taguet, A., Ferry, L., Lopez-Cuesta, J. M., Thermal and fire behavior of natural fibers/PBS biocomposites, Polym. Degrad. Stab., vol. 98, no. 1, pp. 87–95, Jan. 2013, doi: 10.1016/j.polymdegradstab.2012.10.026.

Benítez-Guerrero, M., Pérez-Maqueda, L. A., Artiaga, R., Sánchez-Jiménez, P. E., Pascual-Cosp, J., Structural and Chemical Characteristics of Sisal Fiber and Its Components: Effect of Washing and Grinding, J. Nat. Fibers, vol. 14, no. 1, pp. 26–39, Jan. 2017, doi: 10.1080/15440478.2015.1137529.

Aging Effects on Natural Fiber-Reinforced Polymer Composites | springerprofessional.de. Accessed: Feb. 12, 2025. [Online]. Available: https://www.springerprofessional.de/aging-effects-on-natural-fiber-reinforced-polymer-composites/20086358

Regazzi, A., Corn, S., Ienny, P., Bénézet, J.-C., Bergeret, A., Reversible and irreversible changes in physical and mechanical properties of biocomposites during hydrothermal aging, Industrial Crops and Products, Volume 84, 2016, Pages 358-365, ISSN 0926-6690, https://doi.org/10.1016/j.indcrop.2016.01.052.

(PDF) The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)-A Critical Review, ResearchGate, Dec. 2024, doi: 10.3390/polym15051229.

Kalita, A., Mahakur, V.K., Bhowmik, S., Numerical Analysis of Coir Filler-Based Polymer Composites for Evaluating the Mechanical Properties, Lecture Notes in Mechanical Engineering. Springer, 2025, Singapore. https://doi.org/10.1007/978-981-97-4167-0_29


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :