REAL-TIME MONITORING AND VIBRO-MECHANICAL ANALYSIS: ENSURING THE INTEGRITY OF VENTILATION DUCT SYSTEMS IN HIGH-RISK ENVIRONMENTS
Abstract
Full Text:
PDFReferences
Markov, V., Eng, R., Kupiec, S., Abejar, J., Forschner, S., Picometer-range characterization of LAM dynamics with whole-field LDV, Optical Manufacturing and Testing XIV, vol. 12221, pp. 173–183, ISBN 9781510652191, SPIE, USA, 2022
Klos, A., Bailly, L., Rolland du Roscoat, S., Orgéas, L., Bernardoni, N. H., Broche, L., King, A., Optimising 4D imaging of fast-oscillating structures using X-ray microtomography with retrospective gating, Scientific Reports, 14(1), pp. 20499, ISSN 2045-2322, UK, 2024
Muñiz, R., Nuño, F., Díaz, J., Real-time monitoring solution with vibration analysis for industry 4.0 ventilation systems, 2023
Muñiz Sánchez, R., Nuño García, F., Díaz González, J., González Busto, M., José Prieto, M. Á., Menéndez, Ó., Real-time monitoring solution with vibration analysis for industry 4.0 ventilation systems, Journal of Supercomputing, ISSN 0920-8542, Netherlands, 2022
Yakhni, M., Digital twinning and transient analysis for fault diagnosis in ventilation systems, PhD dissertation, Université de La Rochelle; Beirut Arab University, France & Lebanon, 2023
Shabbir, N., Kütt, L., Asad, B., Jawad, M., Iqbal, M. N., Daniel, K., Spectrum analysis for condition monitoring and fault diagnosis of ventilation motor: A case study, Energies, 14(7), pp. 2001, ISSN 1996-1073, Switzerland, 2021
Vermesan, O., Coppola, M., Bahr, R., Bellmann, R. O., Martinsen, J. E., Kristoffersen, A., Hjertaker, T., et al., An intelligent real-time edge processing maintenance system for industrial manufacturing, control, and diagnostic, Frontiers in Chemical Engineering, 4, pp. 900096, ISSN 2673-2718, Switzerland, 2022
Yakhni, M. F., Hosni, H., Cauet, S., Sakout, A., Etien, E., Rambault, L., Assoum, H., El-Gohary, M., Design of a digital twin for an industrial vacuum process: A predictive maintenance approach, Machines, 10(8), pp. 686, ISSN 2075-1702, Switzerland, 2022
Mazzoleni, M., Sarda, K., Acernese, A., Russo, L., Manfredi, L., Glielmo, L., Del Vecchio, C., A fuzzy logic-based approach for fault diagnosis and condition monitoring of industry 4.0 manufacturing processes, Engineering Applications of Artificial Intelligence, 115, pp. 105317, ISSN 0952-1976, UK, 2022
Salzano, A., Cascone, S., Zitiello, E. P., Nicolella, M., HVAC system performance in educational facilities: A case study on the integration of digital twin technology and IoT sensors for predictive maintenance, Journal of Architectural Engineering, 31(1), pp. 04025004, ISSN 1076-0431, USA, 2025
Hosamo, H., Svennevig, P. R., Svidt, K., Han, D., Nielsen, H. K., A digital twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics, Energy and Buildings, 261, pp. 111988, ISSN 0378-7788, Netherlands, 2022
Cheung, W.-F., Lin, T.-H., Lin, Y.-C., A real-time construction safety monitoring system for hazardous gas integrating wireless sensor network and building information modeling technologies, Sensors, 18(2), pp. 436, ISSN 1424-8220, Switzerland, 2018
Szabo, I., Stoica, C. P., Tulbure, A. A., Condition monitoring for detecting the malfunction of industrial machines, Proceedings of the 2023 46th International Spring Seminar on Electronics Technology (ISSE), pp. 1–5, ISBN 9781665474881, IEEE, USA, 2023
Kumar, N., Verma, H., Sharma, Y. K., Smart sensors for environmental monitoring in Industry 4.0, Smart Sensors for Industry 4.0: Fundamentals, Fabrication and IIoT Applications, pp. 39–55, ISBN 9780323906962, Elsevier, UK, 2025
Matsunaga, F., Zytkowski, V., Valle, P., Deschamps, F., Optimization of energy efficiency in smart manufacturing through the application of cyber-physical systems and Industry 4.0 technologies, Journal of Energy Resources Technology, 144(10), pp. 102104, ISSN 0195-0738, USA, 2022
Domingues, N., Industry 4.0 in maintenance: Using condition monitoring in electric machines, Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 456–462, ISBN 9781665440787, IEEE, USA, 2021
Ooi, B.-Y., Beh, W.-L., Lee, W.-K., Shirmohammadi, S., A parameter-free vibration analysis solution for legacy manufacturing machines’ operation tracking, IEEE Internet of Things Journal, 7(11), pp. 11092–11102, ISSN 2327-4662, USA, 2020
Refbacks
- There are currently no refbacks.

