ESTIMATION OF HARMONIC RESPONSE CONSIDERING THE TRANSFER FUNCTION RESULTED FROM FEA ANALYSIS
Abstract
Keywords: - Power Spectral Density, random vibrations, harmonic response, evaluation method, analytic estimation, Finite Element Analysis.
Full Text:
PDFReferences
Ansys help, SAS IP Inc., 2011.
Code aster, User’s Guide,EDF France, 2012.
T. Sireteanu, O. Gundisch, S. Paraian, Vibratiile aleatoare, Editura Tehnica Bucuresti 1981.
Darabont, Al., s.a., Socuri si vibratii. Aplicatii in tehnica, Ed. Tehnica, Bucuresti, 1988.
Heylen, W., Lammens, S., Sas, P., Modal Analysis Theory and Testing, K.U. Leuven, 1995.
Lupea, I., Roboti si Vibratii, Ed. Dacia, Cluj-Napoca, 1996.
Lupea, I., Masuratori de vibratii si zgomote prin programare cu LabView, Casa Cartii de stiinta, Cluj-Napoca, 2005.
Clarence W. de Silva, Vibration: Fundamentals and practice, Taylor and Francis Group, 1999.
Nigam, N. C., Introduction to Random Vibrations, Massachusetts Institute of Technology Press, 1983.
Newland, D. E., An Introduction to Random Vibration and Spectral Analysis, 2nd edn, Longman, 1984.
Piszek, K. and Niziol, J., Random Vibrations o Mechanical Systems, Ellis Horwood, 1986.
Clarence W. de Silva, Vibration and Shock Handbook, Taylor and Francis Group, 2005.
C. E Beards, Structural Vibration - Analysis and Damping, JohnWiley and Sons Inc., 1996.
Michael R. Hatch, Vibration Simulation Using MATLAB and ANSYS, Chapman and Hall/CRC, 2001.
Ioan Rasa, Probabilitati si statistica, Editura Tehnica, Cluj-Napoca, 1994.
Timoshenko, S., Vibration Problems in Engineering, Toronto D. van Nostrand, 1955.
G. Jacquart, Generaion of random signals of spectral concentration given, Code Aster, 2009.
T.T. Soong, Fundamentals of Probability and statistics for Engineers, John Wiley and Sons Ltd, 2005.
Zaveri, K., Modal Analysis of Large Structures, Naerum:Bruel Publications, 1984
Refbacks
- There are currently no refbacks.