Nicolae URSU-FISCHER, Ioan RADU, Ioana Alexandra MUSCĂ


The transmissibility of one degree of freedom mechanical systems with oscillating support, performing harmonic movements, are studied. Different types of rheological models used as a link between support and the mass are considered. The differences between the transmissibility diagrams corresponding to the “classic” case, usually studied in the theory of vibration (oscillating support, Kelvin-Voigt model and mass) and the systems containing other rheological models are presented and discussed.

Full Text:



Buzdugan, G., Fetcu, Lucia, Radeş, M., Vibrations of Mechanical Systems (in Romanian), Editura Academiei, Bucureşti, 1975, 572 pg.

Carrella, A., Waters, T. P., Brennan, M. J., Free vibration characteristics of an isolated system with a spring-relaxed damper, Twelfth International Congress on Sound and Vibration, ICSV12, 2005, Lisbon, 8 pp., ICSV12.pdf

Fritton, J. C., Rubin, C. T., Qin, Y. X., McLeod, K. J., Whole-body vibration in the skeleton: development of a resonancebased testing device, Annals of Biomedical Engineering, 1997, Vol. 25, pp. 831-839

Фролов, К. В. (ред.) Вибрации в технике. Защита от вибраций и ударов, Том 6, Машиностроение, Москва, 1981, 456 стр.

Genta, G., Vibration of Structures and Machines. Practical aspects, 2nd ed. 1995, 474 pp, Springer, ISBN 0-387-94403-6

Von Gierke, H. E., Brammer, A. J., Chapter 42. Effects of shock and vibration on humans, in Harris C. M., Piersol A. G. (eds.), Shock and Vibration Handbook, 5th edition, McGraw Hill, New York, 2002

Herterich, J., Crede, C., Wirkungen vertikaler mechanischer Schwingungen auf den stehenden Menschen, Lehrstuhl fur Arbeit-System-planung und gestaltung, Universität Bochum, 1990

Lewandowski, R., Chorażyczewski, B., Identification of parameters of the fractional rheological model of viscoelastic dampers, 6 pp., XXIV Symposium “Vibrations in Physical Systems”, Poznan-Bedlewo, May 12-15, 2010, lewandowski.pdf

Marques, S. P. C., Creus, G. J., Computational Viscoelasticity, Springer, 2012 (Chapter 2 – Rheological models: integral and differential representations, pp. 11-21)

Meirovitch, L., Fundamentals of vibrations, McGraw Hill, Boston, 2001, 806 pp.

Moczo, Peter, Kristek, Jozef, Franek, Peter, Lecture Notes on Rheological Models, version 26-10-2006, Comenius University, Bratislava, 2006, 41 pp.

Radeş, M., Mechanical Vibrations, I, Ed. Printech, Bucureşti, 2006, 291 pp.

Rivin, E. I., Passive Vibration Isolation, Professional Engineering

Publishing, 2001

Stein, G. J., Múčka, P., Gunston, T. P., Badura, S., Modelling and simulation of locomotive driver’s seat vertical suspension vibration isolation system, International Journal of Industrial Ergonomics, 2008, Vol. 38, pp. 384-395

Ursu-Fischer, N., Vibrations of Mechanical Systems. Theory and Applications (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 1998, 452 pp.

Ursu-Fischer, N., Ursu, M., Programming with C in Engineering (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2001, 405 pp.

Ursu-Fischer, N., Ursu, M., Complements of Mathematics with Application in Engineering (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2010, 373 pp.

Ursu-Fischer, N., Numerical Methods in Engineering and Programs in C. Differential Equations and Systems with Initial Values and Boundary Values (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2013, 454 pp.

Voinea, R., Voiculescu, D., Simion, F. P., Introduction to the Solid Body Mechanics and Applications in Engineering (in Romanian), Editura Academiei, Bucureşti, 1989, 1130 pg.

Wan, Y., Schimmels, J. M., A simple model that captures the essential dynamics of a seated human exposed to whole body

vibration, Advances in Bioengineering, ASME, 1995, Vol. 31, pp. 333-334

Wan, Y., Schimmels, J. M., Optimal seat suspension design on minimum simulated subjective response, J. Biomechanical Engineering, 1997, Vol. 119.


  • There are currently no refbacks.