Nicolae URSU-FISCHER, Iuliana Fabiola MOHOLEA


In this paper there are studied two mechanical systems, containing an elastic element bar type, leaning to both ends, in the case of the first a mass is moving on the elastic beam with constant or variable speed and on the second case on the travelling mass there is a pendulum bound to it. In both cases it is determined the vertical movements of the mass that moves on the elastic beam according to different parameters. The obtained results can be used to improve the dynamic calculation which must be done in the construction of bridges, cranes and to the mobile elements of serial robots.

Key words: simultaneous nonlinear differential equations, Lagrange's equation, Runge-Kutta methods, traveling cranes, bridges, serial robots, programming in C

Full Text:



Arvidsson, Therese, Train-bridge interaction: Literature review and parameter screening, KTH Royal Institute of Technology, Stockholm, 2014, 85 pp.

Bazhytin, D. V., Simulation of elastic vibrations of crane installations constructions in COMSOL Multiphysics package, Наукові праці ВНТУ, 2013, No. 4, pp. 1-4

Ghinea, M., Fireţeanu, V., MATLAB. Numerical Computing. Graphics. Applications (in Romanian) Editura Teora, Bucureşti, 2003, 302 pg., ISBN 973-601-275-1

Филиппов, А. П., Кохманюк, С. С., The Dynamics of Loads Moving on the Elastic Beams (in Russian: Динамическое воздействие подвижных нагрузок на стержни), Наукова Думка, Киев, 1967

Филиппов, А. П., Vibrations of Deformable Systems (in Russian: Колебания деформируемых систем), Изд. Машиностроение, Москва, 1970, 734 стр. (Chapter 18)

Fryba, L., Vibration of Solids and Structures under Moving Loads (third edition), Thomas Telford Books, London, 1999, 495 pp., ISBN 0-7277-2741-9

Gašić, V., a.o., Consideration of moving oscillator problem in dynamic responses of bridge cranes, FME Transactions, 2011, Vol. 39, pp. 17-24

Казак, С. А., DynamicsofGantryCranes (inRussian: Динамика мостовых кранов), Машиностроение, Москва, 1968, 472 стр.

Лобов, Н. А., DynamicsofLiftingCranes (inRussian: Динамика грузоподъёмных кранов), Машиностроение, Москва, 1987, 158 стр.

Tripa, M., Strength of Materials (in Romanian), Editura Didactică şi Pedagogică, Bucureşti, 1967, 727 pp.

Pesterev, A. V. a. o., On asymptotics of the solution of the moving oscillator problem, Journal of Sound and Vibration, 2003, Vol. 260, pp. 519-536

Press, W. H. a. o., Numerical Recipes in C++. The Art of Scientific Computing, Cambridge University Press, 2003, 1002 pp., ISBN 0-521-75033-4

Roy, A., Saha, A. K., Dynamical analysis of ladle crane, International Journal of Engineering Trends and Technology, 2014, Vol. 15, No. 9, pp. 460-465

Slavchev, Y., Venkov, G., Research on dynamic system with distributed and discrete parameters subjected to pulse excitation, Journal of Theoretical and Applied Mechanics, Sofia, 2010, Vol. 40, No. 4, pp. 3-10

Ursu-Fischer, N., Vibrations of Mechanical Systems. Theory and Applications (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 1998, 452 pp., ISBN 973-9404-05-7

Ursu-Fischer, N., Ursu, M., Programming with C in Engineering (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2001, 405 pp., ISBN 973-686-227-5

Ursu-Fischer, N., Ursu, M., Complements of Mathematics with Engineering Applications (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2010, 373 pp., ISBN 978-973-133-728-9

Ursu-Fischer, N., Numerical Methods in Engineering and Programs in C. Differential Equations and Systems with Initial and Boundary Conditions (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2013, 454 pp., ISBN 978-606-17-0306-7

Ursu-Fischer, N., Elements of Analytical Mechanics (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2015, 605 pp., ISBN 978-606-17-0820-8

Zrnić, N. a. o., Moving loads in structural dynamics of cranes: bridging the gap between theoretical and practical researches, FME Transactions, 2013, Vol. 41, pp. 291-297


  • There are currently no refbacks.