A COMPUTING METHOD OF THE POSITIONAL ACCURACY FOR THE R-R-R TYPE SERIAL ROBOT

Nicolae URSU-FISCHER

Abstract


The accuracy is one of the main characteristics of the robots working in industry and in other domains. The industrial robots resolution, accuracy and repetability are influenced by some factors e. g. the actuators, type of command, sensors, the elements dimensions and masses, speed, the weight of manipulated objects.  Using the mathematical procedures for solving nonlinear simultaneous equations and the inverse problem in the errors theory is presented one method that allow to compute the maximal values of the  robot generalized coordinates deviation thus the operational coordinates values to be situated between the imposed limits.  In the  presented numerical example the method is applied for the study of possible attainted accuracy of the R-R-R type serial robot, often used in industrial applications.   

 Key words:  the inverse problem in the error theory, simultaneous nonlinear equations, Newton-Raphson method, accuracy of serial robots, C programming


Full Text:

PDF

References


Beasley, R. A., Howe, R. D., Increasing accuracy in image-guided robotic surgery through tip tracking and model-based flexion correction, IEEE Transaction on Robotics, 2009, Vol. 25, No. 2, pp. 292-302

Cardoso, F. C. a. o., Kinematic and dynamic behavior of articulated robot manipulators by two bars, ABCM Symposium Series in Mechatronics, 2012, Vol. 5, pp. 1132-1141

Cheng, F. S., Calibration of robot reference frames for enhanced robot positioning accuracy, Chap. 5, 19 pp., in “New Technologies – Trends, Innovations and Research”, C. Volosencu (Ed.), INTECH, 2012, 396 pp., ISBN 978-953-51-0480-3

Conrad, K. L., Shiakolas, P. S., Yih, T. C., Robotic calibration issues: accuracy, repetability and calibration, Proc. of the 8th Mediterranean Conference on Control & Automation (MED 2000), Rio, Patras,17-19 July 2000, 6 pp.

Demidovich, B. P., Maron, I. A., Computational Mathematics, Mir Publishers, Moscow, 1973, 691 pp.

Hayati, S., Mirmirani, M., Improving the absolute positioning accuracy of robot manipulators, Journal of Robotic Systems, 1985, Vol. 2, No. 4, pp. 397-413

Jin, M. a. o., High-accuracy tracking control of robot manipulators using time delay estimation and terminal sliding mode, Int. J. Advanced Robotics, 2011, Vol. 8, No. 4, pp. 65-787

Johnsrud, V., Improvement of the Positioning Accuracy of Industrial Robots, MS Thesis, Norwegian University of Science and Technology, 2014, 191 pp.

Khalil, W., Dombre, E., Modeling, Identification and Control of Robots, Butterworth-Heinemann, 2004, 483 pp., ISBN 978-190399666-9

Lintott, A. B., Geometric Modeling and Accuracy Enhancement of Parallel Manipulators, PhThesis, Univ. of Canterburry, New Zealand, 2000, 184 pp.

Maric, P., Djalic, V., Improving accuracy and flexibility of industrial robots using computer vision, Chap. 7, 26 pp., in “New Technologies – Trends, Innovations and Research”, C. Volosencu (Ed.), INTECH, 2012, 396 pp., ISBN 978-953-51-0480-3

Meggiolaro, M. A., Dubowsky, S., Mavroidis, C., Geometric and elastic error calibration of a high accuracy patient positioning system, Mechanism and Machine Theory, 2005, Vol. 40, pp. 415-427

Merlet, J. P., Jacobian, manipulability, condition number and accuracy of parallel robots, Journal of Mechanical Design, 2006, Vol. 128, pp. 199-206

Negrean, I., Kinematics and Dynamics of Robots. Modelling, Experiment, Accuracy, Editura Didactică şi Pedagogică, Bucureşti, 1999, 222 pg., ISBN 973-30-9313-0

Olofsson, B., Topics in Machining with Industrial Robot Manipulators and Optimal Motion Control, PhD Thesis, Lund University, 2015, 268 pp., ISBN 978-91-7623-435-8

Oueslati, M. a. o., Improving the dynamic accuracy of elastic industrial robot joint by algebraic identification approach, First International Conference on Systems and Computer Science, 2012, Lille, France, 6 pp.

Popescu, P. a. o., Mechanics of Manipulators and Robots. Problems. Vol. 2, Direct Geometric Model (in Romanian), Ed. Did. şi Pedagogică, Bucureşti, 1994, 116 pp.

Popescu, P. a. o., Mechanics of Manipulators and Robots. Problems. Vol. 3, Inverse Geometric Model (in Romanian), Ed. Did. şi Pedagogică, Bucureşti, 1994, 130 pp.

Press, W. H. a. o., Numerical Recipes in C++. The Art of Scientific Computing, Cambridge, University Press, 2003, 1002 pp., ISBN 0-521-75033-4

Siciliano, B., Khatib, O. (Eds.), Springer Handbook of Robotics, Springer, Berlin, 2008, 1628 pp., ISBN 978-3-540-23957-4

Spong, M. W., Hutchinson, S., Vidyasagar, M., Robot Dynamics and Control, 2004, 303 pp.

Strimaitis, M. a. o., Evaluation of dynamics and positioning of robotic system operating in heavy loaded high speed conditions, Journal of Measurements in Engineering, 2013, Vol. I, Issue 1, pp. 28-34

Ursu-Fischer, N., Ursu, M., Numerical Methods in Engineering, vol. I, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2000, 282 pg., ISBN 973-686-039-6

Ursu-Fischer, N., Ursu, M., Numerical Methods in Engineering, vol. II, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2003, 288 pg., ISBN 973-686-464-2

Ursu-Fischer, N., Elements of Analytical Mechanics (in Romanian), Casa Cărţii de Ştiinţă, Cluj-Napoca, 2015, 605 pp., ISBN 978-606-17-0820-8

Vâlcovici, V., Bălan, Şt., Voinea, R., Theoretical Mechanics (in Romanian), ed. II, Editura Tehnică, Bucureşti, 1963, 1007 p.

Verdonck, W., Swevers, J., Improving the dynamic accuracy of industrial robots by trajectory pre-compensation, Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 2002, pp. 3423-3428

Zhang, J., Cai, J., Error analysis and compensation method of 6-axis industrial robot, International Journal on Smart Sensing and Intelligent Systems, 2013, Vol. 6, No. 4, pp., 1383-1399


Refbacks

  • There are currently no refbacks.


JOURNAL INDEXED IN :